Bundesministerium Innovation, Mobilität und Infrastruktur Österreichischer Verkehrssicherheitsfonds

INFRARAD

Effiziente Erhebung fehlerverzeihender Radinfrastruktur

Projektvorstellung & mobiles Messlabor "BikeStar"

Karin Markvica

ECKDATEN

- Projektname: InfraRad Effiziente Erhebung fehlerverzeihender Radinfrastruktur
- Förderschiene: Österreichischer Verkehrssicherheitsfonds (VSF) im Rahmen der 7.
 Ausschreibung zum Thema "fahr Rad sicher!"
- Projektkonsortium:
 - AIT Austrian Institute of Technology GmbH (PL: Markvica, Stv: Prändl-Zika)
 - Verkehrsverbund Ost-Region (VOR) GmbH / ITS Vienna Region (PL: Wieser, Stv: Stögerer)

Projektlaufzeit: 22 Monate (07/2025 – 04/2027)

ZIELSETZUNG

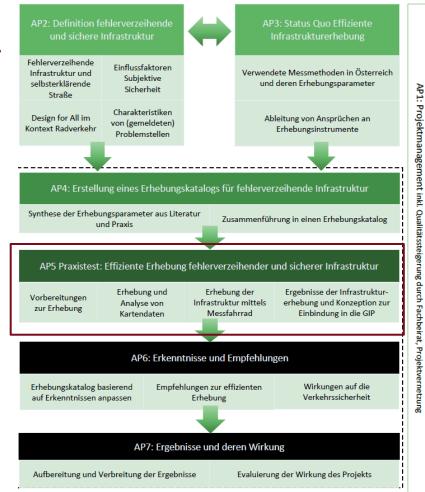
Das Projekt beabsichtigt eine effiziente **Erhebungsmethode** der Radinfrastruktur zu entwickeln, die als **Datengrundlage für Instandhaltungsarbeiten sowie für Neu- bzw. Umplanung** dienen kann und darüber hinaus eine **Vergleichbarkeit der Infrastrukturen** zwischen den Gebietskörperschaften und damit ein österreichweites Benchmarking ermöglicht.

Das gegenständliche Vorhaben hat zum Ziel, Infrastrukturinformation in Österreich effizient, objektiv und vergleichbar zu erheben und mit der Zielgruppe der Infrastrukturbetreibenden und Planenden über die Graphenintegrations-Plattform (GIP) zu teilen.

INNOVATIONSGEHALT

Entwicklung einer effizienten Erhebungsmethode durch:

- Nutzung existierender Datensätze,
- Aufbau auf bestehendem Knowhow,
- Vermeidung von mehrfachen Befahrungen,
- Erhebung während der Fahrt und
- hohe Datenqualität


PROJEKTABLAUF

Laufzeit: 07/2025 - 04/2027

Projektpartner: VOR / ITS Vienna Region

LOI-Partner:innen:

- 4 Bundesländer
- ÖVDAT
- Klimabündnis OÖ
- Factual Consulting

Erhebung von 150 km Radinfrastruktur ab Frühjahr 2026

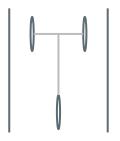
MESSFAHRRAD | AUFBAU "BIKESTAR"

Messung mit Fahrrad: Erreichbarkeit der Wege

Kein Halt während der Erhebung notwendig

E-Bike für komfortables Fahren

Erhebung aller Parameter in einer Fahrt



MESSFAHRRAD | AUFBAU "BIKESTAR"

Dreirädriges Modell?

Sicherheit des Messequipments

Mehrere Bodenberührungspunkte für die Messung

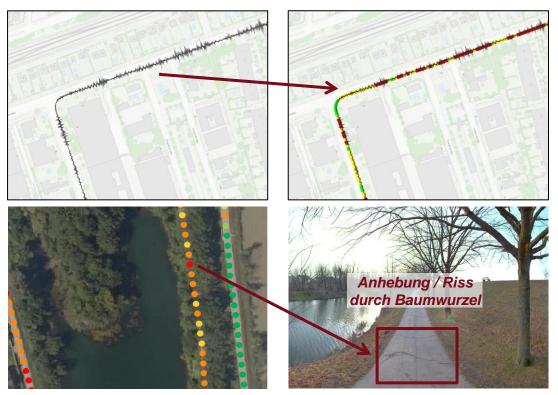


MESSFAHRRAD | MÖGLICHE MESSGRÖSSEN

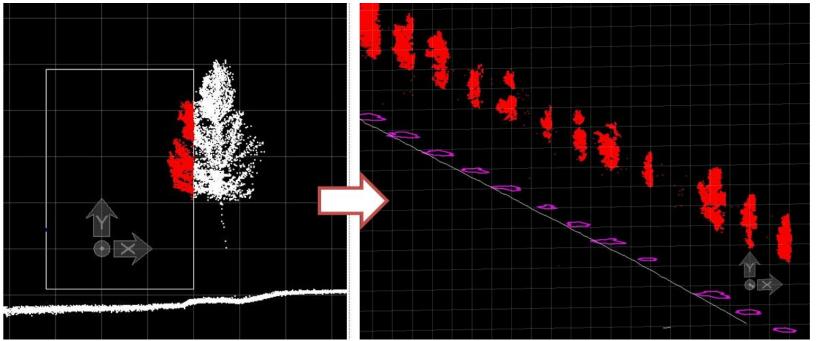
Basisausstattung	Mögliche Messgrößen
Applanix	Trajektorie, Kurvenradius, Ebenheit, Längs- und Querneigung
Stereokameras	Objektpositionierung, Fahrbahnbreite, Beleuchtung, Farbe, Abstellanlagen, Seitenabstände
LiDAR	Fahrbahnbreite, Sichtbeziehungen, Lichtraumprofil, Risse/Schäden, Randsteinhöhe, Überholabstände, Seitenabstände, Differenzgeschwindigkeit bei Überholvorgängen
Weggeber	Wegdistanz
Temperatursensoren	Lufttemperatur, Fahrbahntemperatur



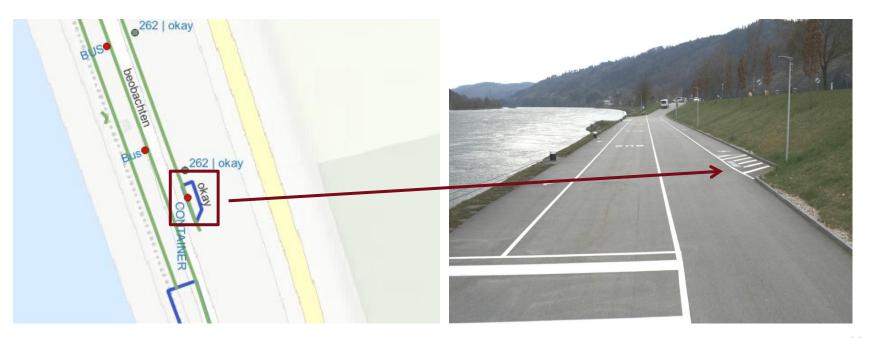
Datenschutzkonforme Bildaufnahmen



Oberflächenschäden / Risse – Bewertung nach Schadensklassen



Ebenheit / Komfort – Bewertung nach Schadensklassen



Bewuchs / Lichtraum

Bodenmarkierungen – Attributierung und Zustand

Inventarisierung z.B. Verkehrszeichen im RoadViss

Oberflächentemperatur

Überwiegend Forschungszweck

Aber auch: Bereich mit hoher

Oberflächentemperatur → Begrünung /

Beschattung schaffen für Fahrkomfort

Oberflächentemperatur [°C]

18 - 19

19 - 20

20 - 2°

21 - 22

22 - 23

23 - 24

24 - 25

<u>25 - 26</u>

26 - 27

27 - 28

<u>28 - 29</u>

29 - 30

30 - 31

31 - 32

32 - 33

33 - 34

Bundesministerium Innovation, Mobilität und Infrastruktur Österreichischer Verkehrssicherheitsfonds

VIELEN DANK!

DI Dr. Karin Markvica, MA

+43 664 88390607

⋈ karin.markvica@ait.ac.at

Dominik Wieser, MA MSc

) +43 664 60 955 6224